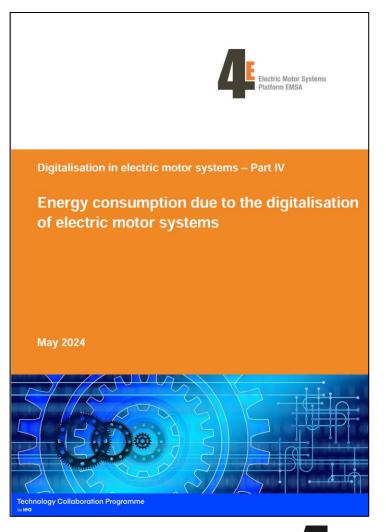
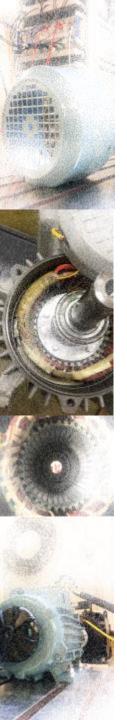
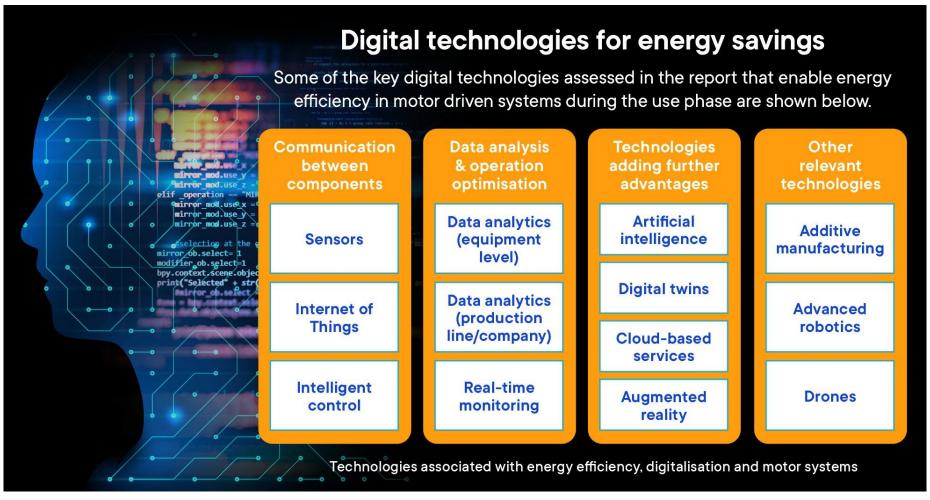


Rita Werle – EMSA Electric Motor Systems Platform
Fabian Eichin, freelance
Maarten van Werkhoven - EMSA Electric Motor Systems Platform

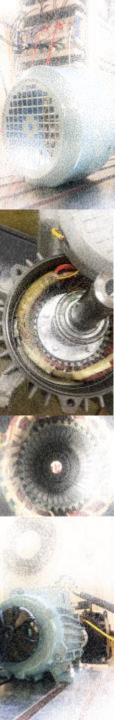

Content


1. Introduction

2. Five cases


3. Conclusions

<u>Download report</u> from <u>www.iea-4e.org/emsa</u>



Digitalisation of electric motor systems

Source: Classification of digitalisation technologies for electric motor driven systems, EMSA, 2022

Benefits of digitalisation

Non-energy benefit

Avoid down time

Increase production efficiency

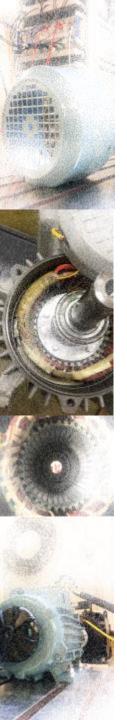
Less human interaction

Increase lifetime

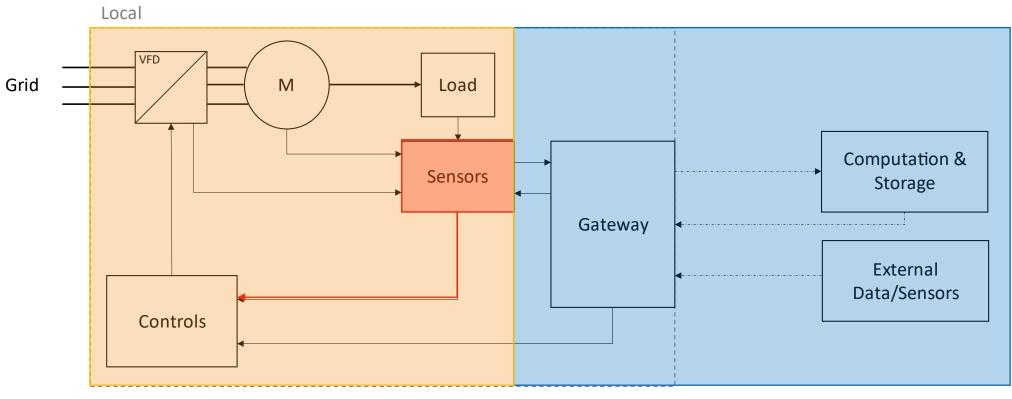
Cost-efficient maintenance

Energy benefit

Avoid parasitic energy consumption


Increase system efficiency

Monitor energy consumption



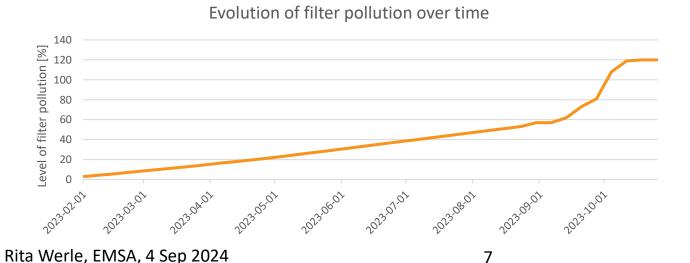
Value: economic and technological advantage

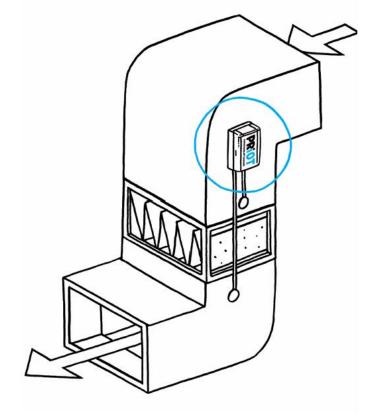
Generalised structure of digital motor systems

- 1. Sensor: includes all subcomponents that facilitate a sensor signal including its local data transmission
- 2. Internal: the energy required to process and store data locally
- 3. External: the group of power consumers enabling the facilitation of all external data communication and delocalized storage processes (gateway, network transmission and delocalized storage)
- 4. **Other**: residual energy that is not assignable to 1-3 (e.g. embodied energy from device manufacturing, prevented technician mobility).

Five cases

- 1. **IoT sensor** in air ventilation system in server facilities **to detect clogged filters**Source: IoT solutions provider PRIOT AG, Switzerland
- 2. Predictive maintenance and **vibration diagnostics via smart sensor**Source: motor service company Küffer Elektro-Technik AG, Switzerland
- 3. Intelligent control of water treatment facility pump system, applying **electrical signature analysis**Source: water supply and sewerage company Yorkshire Water, United Kingdom
- 4. Large scale field trial, using **electrical signature analysis** as in Case 3 Source: project ERGO. Solutions provider: Samotics, the Netherlands
- 5. Intelligent control of an air compressor system
 Source: Hamilton Bonaduz, Switzerland, producing medical devices and laboratory equipment.
 Solutions provider: KAESER Kompressoren

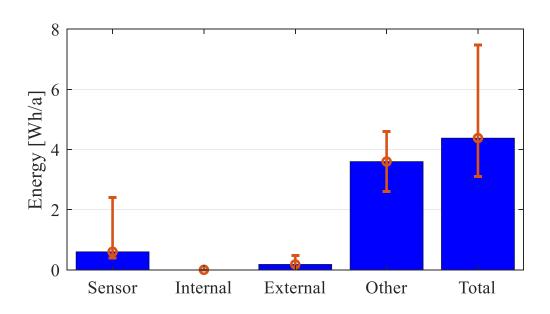




Case #1: IoT sensor to detect clogged filters (1/2)

- Sensor module can detect clogged air filters via differential pressure sensing
- Power drawn by the motor is increased by a factor of 2.5 when the filter is clogged
- In an example, after 9 months of operation, the filter was clogged.
 Without the sensor, the filter change would have happened at the next manual inspection, 3 months later. Instead, it could be exchanged promptly.

This way, 20.4% of electric energy could be saved.

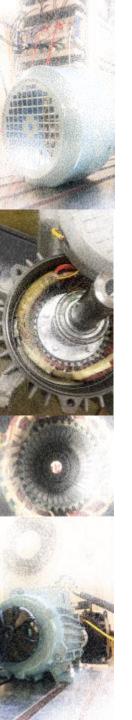


Case #1: IoT sensor to detect clogged filters (2/2)

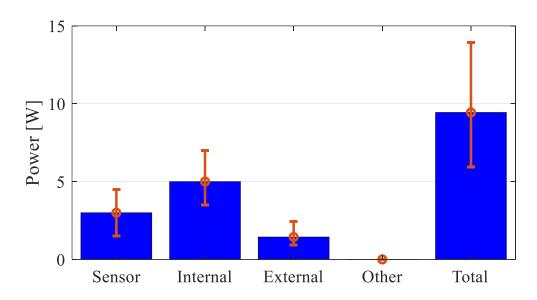
Case 1	Energy	Share of total energy			
	[kWh/a]	[%]			
Annual consumption	6'510	100.0%			
Gross saving potential	1'329	20.4%			
Digitalisation energy expenditure	0.0044	0.0%			
Net energy benefit due to digitalisation	1′329	20.4%			

- Sensor: negligible, compared to overall energy consumption. It consists of the module consumption obtained from the average battery current.
- Internal: no internal energy is consumed, as there is no further internal hardware to facilitate the system.
- 3. External energy: arises from the data transmission and cloud storage given by the data volume and current impact of end-to-end network consumption.
 [1] This is quite low due to low data transmission rate.
- 4. Other: embodied energy from battery manufacturing. This can be up to two magnitudes higher compared to the battery capacity [2], but may still be insignificant in view of the motor system energy consumption.

[1] Kemna R: et al., ICT Impact Study Final Report , 2020 [2] Ramsey, H., Life Cycle Analysis of AA Alkaline Batteries, 17th Global Conference on Sustainable Manufacturing, 2020

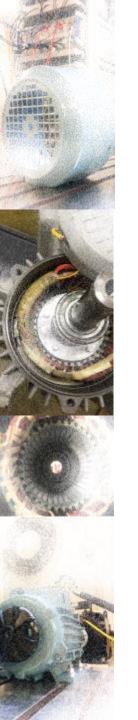

Case #2: smart sensor (1/2)

- In this showcased demonstration, a smart sensor is affixed to the motor to identify potential issues (e.g. bearing failure)
- Sensor transmits data wirelessly
- Powered via cable to avoid the need for a battery



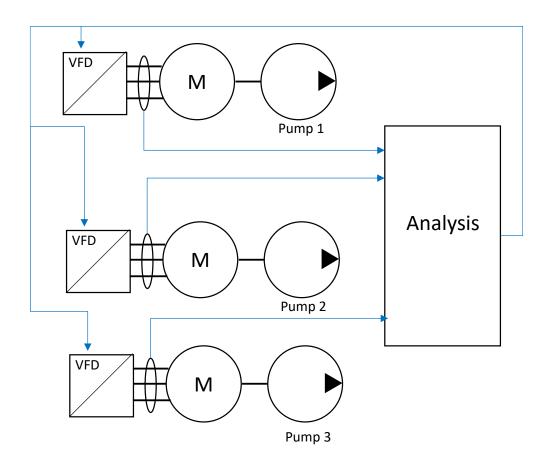
Demonstration setup Küffer Elektro-Technik AG, Switzerland

Case #2: smart sensor (2/2)

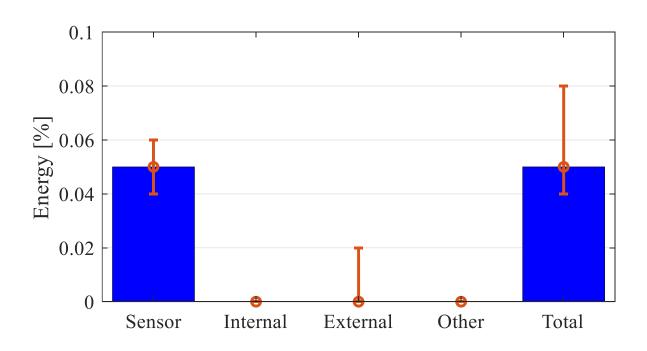


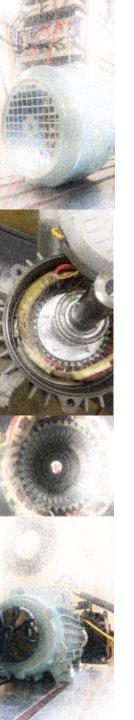
	Commercial Sensor 1 [1]	Commercial Sensor 2 [2]	Sensor Case 1 (IoT sensor)
Battery Energy [Wh]	9.36	2.85	6
Battery life (worst case) [a]	2	2	2
(maximum) [a]	5	5 or 15*	10
Annual energy consumption [Wh/a] (based on worst case lifespan)	4.68	1.43	3
Gateway included	no	no	partially

[1] Siemens SITRANS digital solutions, https://cache.industry.siemens.com/dl/files/158/109804158/att_1085480/v1/sitra ns_ms200_cc220_scmiq__fi01_en.pdf, accessed 11/2023 [2] ABB Motion Services, ABB Ability Smart Sensors, https://new.abb.com/service/motion/data-and-advisory-services/conditionmonitoring-for-rotating-equipment, Accessed 11/2023


- Cabled (vibration) sensor power rating: 3 W
- Internal gateway hardware structure average power: roughly 5 W. The idle power of the module is roughly 3 W.
- External impact of data transmission and storage
 is given by the data transmission rate and specific
 network energy impact, which amounts to an
 equivalent of 1.5 W at the given sampling rate
 and data volume.
- Total digital power assignable to the smart sensor system: 9.5 W
- Sensitivity analysis for motor size, data transmission rate, operating hours in the report

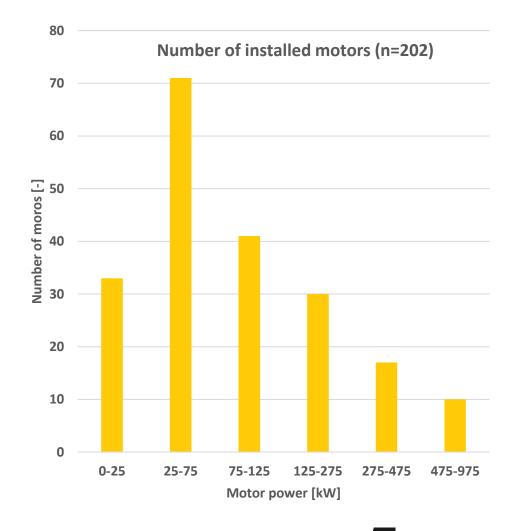
Case #3: electrical signal analysis (1/2)


- Sewage pump system has been equipped with electrical sensors.
- Voltage and current sensors allow observing the load and rotational speed of the pumps.
- Offline optimisation algorithm subsequently adapts the set-points and target speeds at which the different pumps are operated at, so the pumps can be operated closer to their best efficiency point.
- Continuous monitoring
- 5.7% of energy saved, without any hardware measure, solely because of control adaptation.


Case #3: electrical signal analysis (2/2)

Case 3	Energy	Share of total			
	[MWh/a]	energy			
	[1010011,74]	[%]			
Annual consumption	1'060	100.0%			
Gross saving potential	60.4	5.7%			
Digitalisation energy expenditure	0.5	0.05%			
Net energy benefit due to digitalisation	59.9	5.7%			

- Sensor and computer system consumption based on power rating (120 W)
- Total relative consumption is below
 0.1% for any scenario, where additional energy for cloud
 storage/communication is factored in.

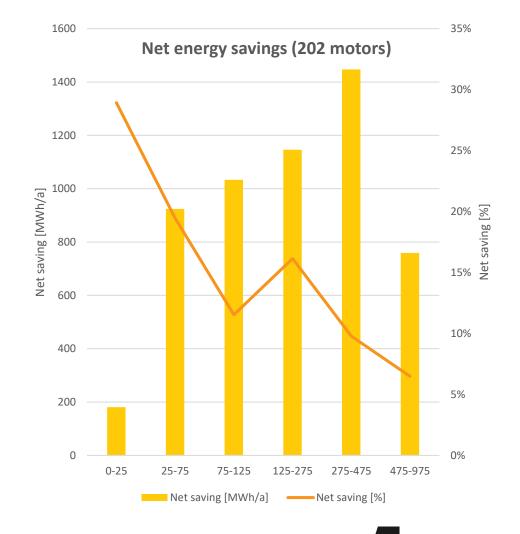


Case #4: field trial - electrical signal analysis (1/2)


- To analyse the energy saving effect in more detail, data from a bigger study is presented
- A field trial project with 1'007 assets (mainly pumps)
 within water and chemical companies
- Digital setup as presented in Case #3
- A selection of 202* motor systems has been monitored and assessed for energy savings potential, including analyses on efficiency benchmarks, operating points and best efficiency points
- 142 were already equipped with a VSD before the optimisation ('optimised assets'), 60 were not ('nonoptimised assets')

VSD: Variable Speed Drive

^{*}Selection based on the data availability of the motor (rated efficiency from nameplate or datasheet) and the driven application (datasheet with pump curve) at the end user.



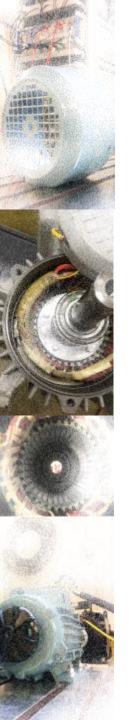
Case #4: field trial - electrical signal analysis (2/2)

- Energy consumption from digital installation assumed to be the same as in Case #3 (equal set-up)
- Relative savings between 6% 29%, average: 11.4% [1]
- Illustration of potential savings range for a small sample (202 pump systems)
- Larger systems deliver larger absolute energy savings (kWh)
- Pump systems without a VSD before:
 - Highest net saving: 46%
 - Average net saving: 24%.
- Pump systems with a VSD before:
 - Average net saving: 9%

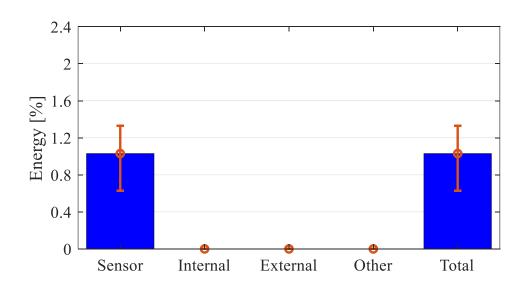
[1] ERGO project - Energy reduction through condition based maintenance, 2023, Institute for Sustainable Process Technology, Netherlands

VSD: Variable Speed Drive

Case #5: intelligent control (1/2)


- An air compressor system has been equipped with an intelligent control system
- Control system evaluates pressure and humidity sensor feedback for an adaptive compressor control
- Hardware upgrade: three compressors were retrofitted of which two are equipped with a VSD
- Compressed air baseload is produced through compressors without VSD, remaining variable compressed air produced with compressors with a VSD
- Energy saving: 16%, due to:
 - running the compressed air system at the lowest possible total system pressure (5%)
 - optimised control (6%)*
 - hardware retrofit (5%)

*considered as a quantifiable direct consequence of the digital solution


VSD: Variable Speed Drive

The new compressed air system with Achim Sax, Director Facilities Hamilton Services AG (photograph: Pascal Kienast)

Case #5: intelligent control (2/2)

Case 5	Energy	Share of total		
	[MWh/a]	energy		
		[%]		
Annual consumption	488	100.0%		
Gross saving potential	78	16.0%		
Digitalisation energy expenditure	5	1.0%		
Net energy benefit due to digitalisation	29	6.0%		
Net energy benefit total	73	15.0%		

- Sensor: arises from the overall consumption of the intelligent control system consisting of sensor modules and computer system
- As the control system operates in a closed loop, there is no additional energy consumption that can be directly assigned to the system

Overview

Case studies of digitalisation of Electric Motor Driven Systems (EMDS)													
Motor Driven Unit Variable Speed Orive Mechanical Equipment Application (Gear, bett, Equipment Compensor, transport Variable) Motor System						fotion							
Case	Digital aspects	Before	After	Net savings	Role of digital- isation	Power equipment	Con	Control, sensor, sol gateway	Motor	Transmission	Application (PFCO)	Piping, other	Heat exchanger, other
1	IOT in air ven- tilation sys- tem in server facilities	Sporadic manual tests of air filter clogging	Detection of clogged air filters in ventilation sys- tem for servers	20.4%	Р	-	-	X	-	1	-	S	-
2	Predictive maintenance and vibration diagnostics	Visual motor inspection (or un- planned failure)	Detection of po- tential motor fail- ures, which could lead to increased motor losses and downtime	n.a.	Р	_	-	X	S	-	-		_
3	Intelligent control of wa- ter treatment facility pump system	Static (set points for) operation of pumps	Adapted set- points (load) and target speeds of pumps, closer to their optimal efficiency	5.7%	Р	-	S	X	-	-	-	-	-
4	Large scale field trial (#202 motors)	Mixture of DOL and VFD operat- ed motors, some sys- tems partly optimised	Improved control/ VFD operation, optimised assets including replace- ments and/or other optimisa- tions	aver- age: 11.4%	P	X	X S	X	×	-	X	(-	_
5 EMDS	Intelligent control of air compressor system in large produc- tion facility	Set of DOL (on/off) air compressor units	VSD operated compressor units plus sensors and control	15.0%	A A Ve. PFCO	= pum	X p/fan/o	X	- sor	-	X	S	S

cases including hardware upgrades

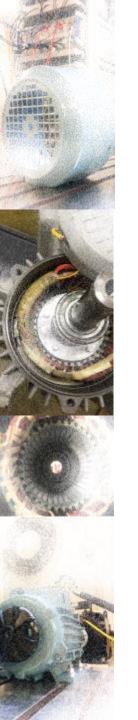
A= active role: digitalisation has a direct influence on the energy consumption of an EMDS

P= passive role: digitalisation is an enabler for identifying savings (delivers information)

X = components added to the EMDS

S = sensor(s) added to the EMDS

- Net savings (excluding digital energy consumption): 5.7% to 20.4%
- **Energy expenditure to facilitate digitalisation never** exceeded 1%
- Digital energy consumption in motor systems is low and may be neglected in many cases of this study
- **Consumption** attributable to the digitalisation of motor systems stems from a variety of sources
- External network communication i.e., the use of cloud services can add to the total energy consumption when high data volumes and storage requirements are given
- Battery life in smart sensors: more common to work with small and compressed data sets that leave a marginal impact
- Sensors and local data communication or storage devices typically show a low energy consumption
- Infrastructure necessary to facilitate digitalisation of motor systems may already be in place to a large extent, or is not **required** (e.g. data handling for smart sensors)


Conclusions: proposed classification

Classification of digitalised motor systems	Smart Sensors/IoT	Advanced analytics	Adaptive control systems
Annual energy consumption of digital system	< 10 Wh/a	10 Wh/a -200 kWh/a	> 200 kWh/a
Computational frequency	<<1 Hz	~1Hz	>1 Hz
Number of motors	1	>=1	>2
Primary target of digitalisation	Error Detection, analytics	Error detection, optimisation	Energy savings, emission reduction
Assignable cases from this study	Case 1 Case 2	Case 2 Case 3 Case 4	Case 5

Energy savings achieved through the digitalisation of motor systems far outweigh the additional energy consumption resulting from the digitalisation process.

- Different typical energy consumption which correlates with the computational complexity
- Baseline values chosen arbitrarily considering the cases
- Benefit of digitalisation is constrained to what type of measures are classified as digitalisation and what is regarded as the baseline
- In the cases studied, the savings potential depends on whether
 - the motor system is already optimised to some level
 - measures can contribute to an optimised system operation

Outlook

- The sample size with five cases is not representative which is a limiting factor for aggregated conclusions.
- Collection of further cases would be helpful to be able to draw statistically relevant conclusions and get more detailed answers on the following:
- 1. What type of digitalisation solution suits best certain motor system setups?
- 2. To what extent does digitalisation unlock additional energy savings?
- 3. What is the savings potential in certain sectors (energy-intensive, non-energy intensive)?
- 4. What is the cost-effectiveness of digitalisation and the size of programmes required for its large-scale application?

Contacts

- Fabian Eichin
 Switzerland
 <u>fabian.eichin@smartdrives.ch</u>
- Rita Werle
 Impact Energy
 Switzerland
 Tel: +41 44 226 20 10
 rita.werle@impact-energy.ch
- Maarten van Werkhoven
 TPA advisors
 The Netherlands
 Tel: +31 23 536 80 90
 mvanwerkhoven@tpabv.nl

Download report from www.iea-4e.org/emsa

