

ISO and IEC work together to improve Energy Efficient Electric Motor Driven Systems (IEC & ISO JAG 22)

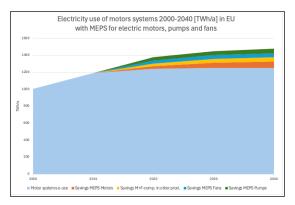
4 September 2024, EEMODS Lucerne Switzerland

Conrad U. Brunner, member of ISO/IEC JAG22 Maarten van Werkhoven, member of ISO/IEC JAG22

Content

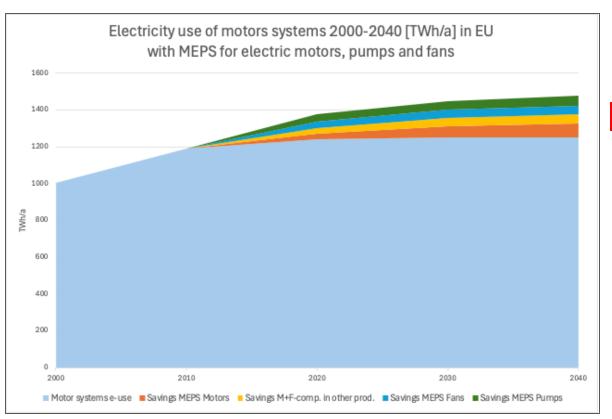
- 1. Why IEC and ISO need to better cooperate for energy efficiency
- 2. Origin of IEC & ISO JAG 22
- 3. What are the current issues discussed in JAG 22
- 4. New Projects in JAG 22
- 5. Outlook, mid-term goal of the JAG 22

Energy use and energy savings


Challenge

- More than 50 per cent of all electrical energy i.e. 12,400 TWh (2021) is used by electric motor systems globally
 - mostly in industry and buildings,
- Global electricity demand could rise by 25% to 30% by 2030 (relative to 2021) due to
 - an increase in motor systems in industry and buildings
 - a shift to the use electric heat pumps, and
 - an increased use of electric vehicles
 - and hydrogen (production).

The main growth contribution i.e., 70% to 80%, will come from China, India and other emerging markets and developing economies.


Energy Efficiency works

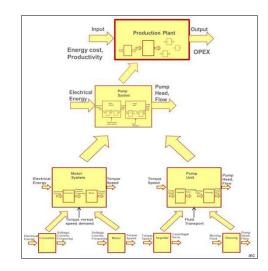
 Minimum Energy Performance Standards (MEPS) show effective savings for EMDS, e.g. EU Ecodesign Impact Accounting

 What's next, for 2030 and 2040; how to accelerate energy savings, to meet net zero goals?

Energy Efficiency works

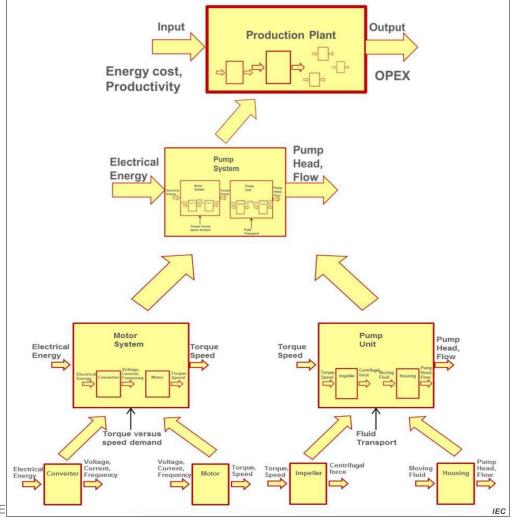
19% savings 2040

(source: EC Ecodesign Impact Accounting, Overview Report 2023)


Energy use and efficiency – product level

IEC and ISO, global standard makers

Motor control		Motor	Mechanical equipment		Driven equipment			
IEC TC 121	IEC TC 22 SC 22G	IEC TC 2	ISO TC 41	ISO TC 60	ISO TC115	ISO TC 117	ISO TC 86	ISO TC 118
Switchgear & controlgear	Adjustable speed drive	Rotating machinery	Pulleys & belts	Gears	Pumps	Fans	Cooling-Com pressors	- Air-Com- pressors
1927	1934	1911	1947	1947	1964	1964	1957	1965


- Energy efficiency standards
 - definition of scope
 - testing standards
 - efficiency classification
- On product level

Components -> make systems -> make factories

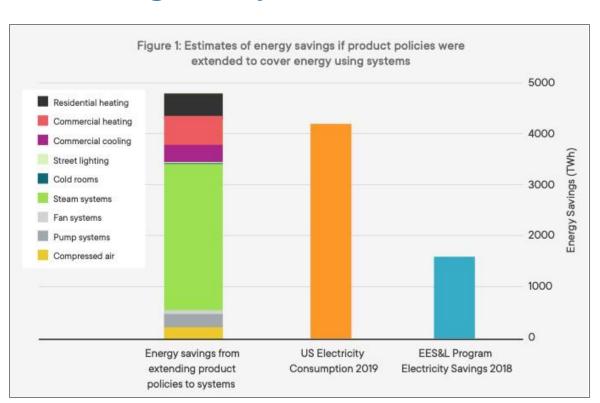
Energy use and efficiency – product level

Components -> make systems -> make factories

Source: IEC Guide 118, 2024

IEC Guide 118 > Energy efficiency aspect categories

The use cases for energy efficiency


Table 1 – Energy efficiency aspect categories and examples

Energy efficiency aspect categories	Energy efficiency aspect					
	terminology					
	system boundaries (including the scope for energy efficiency)					
	EE KPI's (energy efficiency key performance indicators)					
Define energy	energy baseline					
efficiency	driving parameters (adjustment factors, static factors)					
	reference applications					
	reference load profiles					
	reference control strategies					
	test methods					
Determine energy	measurement methods					
Determine energy	measurement plans					
efficiency	calculation methods					
	classes					
A	Energy audits					
Assess energy	Benchmarking methods					
efficiency	Energy efficiency investment evaluation					
	Energy management system					
	Design criteria guidelines					
Improve energy	Application guidelines					
efficiency	Best practices					
	Loss reduction					
	(Standby losses)					
	Interoperability					
Fachla anaras	Communication					
Enable energy efficiency	Standardized data format					
emoleticy	Qualification of energy efficiency services					
	Measurement infrastructure					

From product to systems – regulatory needs

Energy efficiency regulations for systems need at least

- The scope which identifies those products or systems that are included and excluded
- The addressees of the regulation
- The energy efficiency metric(s) and requirements
- The performance assessment methods including testing or alternatives

Source: IEA 4E Progressing Energy Efficiency Policies for Systems, 2022

Origin of ISO & IEC JAG 22 (Joint Advisory Group 22)

- Precedes informal cooperation and information exchange between IEC and ISO
- Preparatory project during 2020-2021 led to the launch of ISO/IEC JAG 22:
 Optimized Energy and Power Consumption of Electric Driven Machine Units

Purpose

- To facilitate the exchange and coordination between ISO and IEC in the field of all types of Electric Driven Machine Units (EDMU).
- To identify the relevant coordination issues and proposed solutions and describe these considerations or results of such exchange and coordination discussions for guidance, reference.

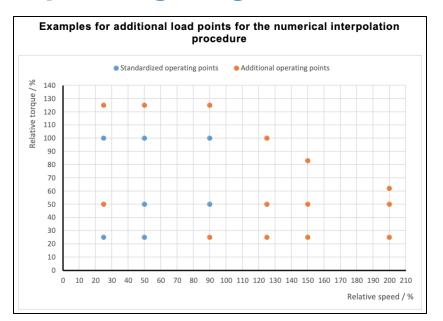
Electrotechnical

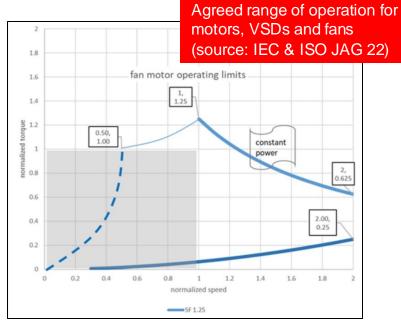
Commission

Home / Standards development / Technical committees and subcommittees / TC 22 / SC 22G / JAG 22

development

assessment

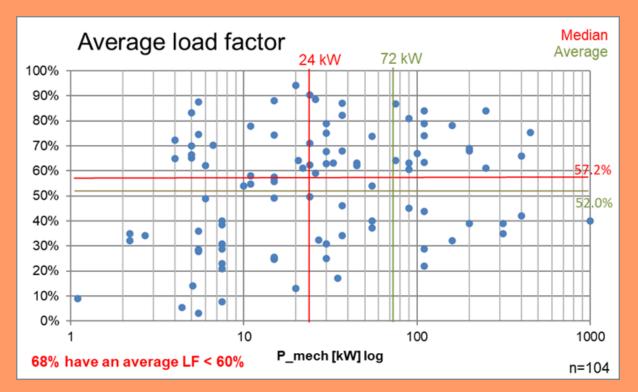

difference


ISO & IEC JAG 22

The list of items worked on/detailed in 2023:

- Mutual access to committee confidential draft standard documents by each other group (IEC & ISO TC or WG)
- Possibility of inclusion of formal comments on each other's standard projects
- Operating range of motor systems for over-speed and over-torque
- Aligning operating points for tests
- Round Robin for losses of Variably Frequency Converters (report 1 and 2)
- Interpolation and extrapolation programs for efficiency calculation for motors, converters and their combination
- The mutual citation rules from IEC and ISO standards were clarified (example in ISO 12759-6)

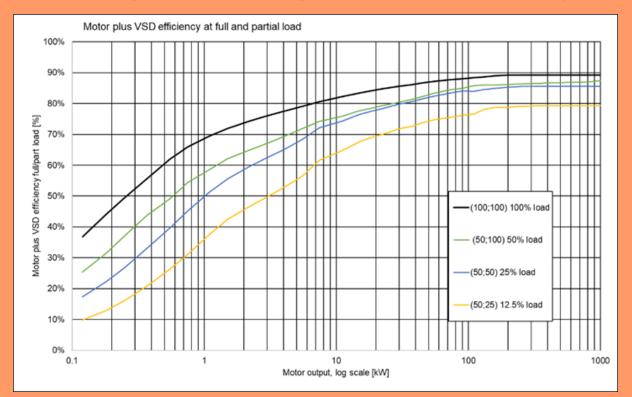
Interpolation and extrapolation programs: operating range



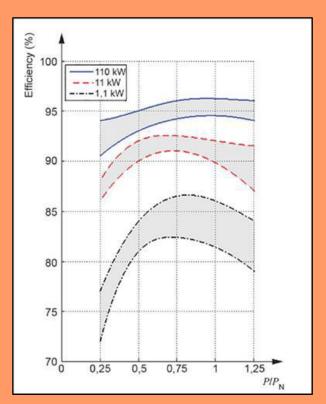
11

IEC TS 60034-31 edition 2 (published in 2021) specifies an interpolation method for efficiency (including an official excel tool) for 50 Hz motors, converters and their combination from 0 % to 100 % speed and 0 % to 100 % torque based on measurements of 7 operating points

(Source: IEC 60034-2-3, Ed.2) (source: IEC & ISO JAG 22)

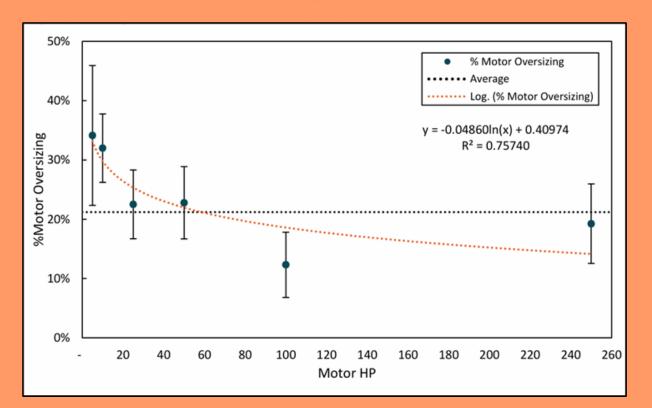

- Oversized electric motor systems are everywhere
- In all applications
- Many explanations ...
- But no good excuses

Average load factor (x-axis: 0-100%) of 104 measured motor systems


(source: Easy Impact-Energy, 2015 [12])

two thirds oversized

Efficiency for electric motor plus VSD from 0.1 to 1000 kW in full and partial load (source of data: IEC 60034-31 and IEC 61800-9-2)


below 50% load efficiency suffers

Typical efficiency versus load curve bands, performance characteristics of 4-pole, three phase, cage induction motors of different power ratings, (source: IEC TS 60034-31, edition 2, 2021)

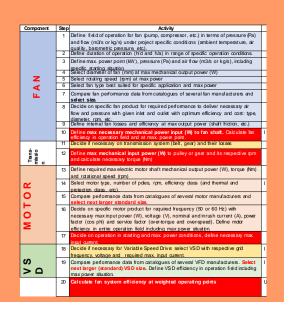
15

below 50% load efficiency suffers

Motor oversizing (%) vs. motor output power (kW), based on analysis of 342 clean water pumps (source of figure: [13] NEEA 2019)

small motors are more oversized

16


	Averag	je load	Extra inves	trnent cost	Additional energy use Range		
	Rai	nge	Rar	nge			
Oversizing	low	high	low	high	low	high	
Heavy	20%	40%	30%	40%	20%	30%	
Medium	40%	60%	20%	30%	10%	20%	
Low	60%	80%	10%	20%	5%	10%	
Optimum	80%	100%	0%	10%	0%	5%	

Degree of oversizing versus extra investment cost and additional energy use (source: CUB 2024)

higher costs more energy

CONCLUSIONS

- 1. Carefully determine max. operational load
- 2. Make motor output and application input equal
- 3. Make converter output and motor input equal
- 4. Use 20-Step-Checklist ⊃ ⊃ ⊃
- 5. Save investment cost
- 6. Save energy

Outlook, mid-term goal ISO and IEC talk together

- Newby IEC/ISO JAG 22 has shown
 - potential benefits of cooperation and
 - necessary intensity of exchange
- Policy makers: challenge to find effective tools to accelerate reduction of energy use and emissions
- Going from products to systems adds complexity
 - energy efficiency aspects and
 - related aspects like e.g. power reduction, material use, safety and more.
- Technology development + the related global technical standards are key enablers

- Further coordination and alignment on these matters is even more necessary
 - in between ISO and IEC TCs, and
 - between policy makers and stakeholders
- JAG 22, looking ahead
 - continues to work on EE rotating systems
 - can serve as a cooperation model for other related subjects, other entities
 - will contribute to the challenge of verifying systems performance new AND installed in industry and buildings
 - Experts are invited: see 'JAG22' on IEC.ch

Thank you

Maarten van Werkhoven

TPA Advisors
Amsterdam, Netherlands
mvanwerkhoven@tpabv.nl

Conrad U. Brunner
CUB Zurich Switzerland
cub@cub.ch