

JMR 5213

Update on Life Cycle Assessment of Smart Lamps and SSL Annex LCA report

Kévin BERTIN (LAPLACE) Ridha KOUKI (LAPLACE) Georges ZISSIS (LAPLACE)

LCA of residential smart lighting

Standby & gateway consumption Lower efficacy Increased amount of materials

Increased comfort and well-being Reduced usage?

Smart LED (8 LED / house)

Scenario 1 : 2,7h / day Scenario 2: Reduced use time / day

LED

DOE US (2012)

Dillon & al. (2019)

CFL E27

Naviguant (2009)

- EU: Standby Consumption = 0,5W
- US-California: Standby Consumption = 0,2W

Configurations:

- 2 dedicated motion detectors + Gateway (1,5W)
- 2 dedicated motion detectors No gateway
- Sensor included in each lamp No Gateway
- Goal: Find the daily light saving to be achieved in order to compensate for the additional energy consumption due to smart layer.

LCA Parameters

	CFL	LED	Smart LED 1	Smart LED 2
Power (W)	12	7.7	9	9
Efficacy (Im/W)	68	104.9	90	90
Flux (lm)	816	808	810	810
Lifetime (kh)	10	15	15	15
Day use (h)	2.7	2.7	2.7	1.3
Lifetime (year)	10.1	15.2	15.2	22.8
Annual consumption(kWh/yr)	11.8	7.59	8.87	4.43
Klm.yr (Functional Unit)	8.28	12.3	12.3	18.5
Reference flow	1,49	1	1	0,667

- Gateway consumption for smart lamps: 1,5W
- > Standby mode consumption : EU 0,5W / US 0,2W
- Average use of lamp for residential lighting: 2,7h/day
- Increase of production phase impact for the smart layer:
 - ➤ Gateway + 2 dedicated presence detectors: +10% embodied energy
 - ➤ No Gateway 2 Dedicated presence detectors : +2% embodied energy
 - ➤ No Gateway presence detector included in luminaire : +0,5% embodied energy per lamp

Presence detector

For the presence detector, the supply current was measured by supplying the nominal voltage (i.e. 3V DC) via a voltage generator (DC Power Supply PS3003) instead of batteries (2 x AAA, 1.5 V). A typical profile of the measured current is shown below.

- Average current: 7,6 mA
- Average power: 22,8 mW
- Lifetime:
 - 132000 hours if dedicated
 - Equal to lamps lifetime if included in luminaire

Endpoint Impacts (EU)

MR 5213

Endpoint EU - Standby = 0.5W

Endpoint Impacts (US)

MR 5213

Endpoint US - Standby = 0.2W

Conclusion and next steps

- In the EU residential context a 52% to 70% reduction in usage should be achieved (0,5W Standby power)
- In the US a 30% to 48% reduction in usage should be achieved (0,2W Standby power)
 - Neither the EU nor US standby power regulations seem to be sufficient for a relevant residential use, as it seems difficult (if not impossible) to achieve the reduction in usage.
- There is no significant difference between the motion sensors included in the luminaire and the 2 dedicated motion detectors. However, it might be easier to reduce usage with included sensors.
- Next steps:
 - ✓ Teardown of a gateway, a dedicated motion detector and sensor equipped lamps to verify the embodied energy hypothesis.
 - ✓ Keep in touch with Casper to work on a use case in the tertiary sector. The results from The Shift Project are more encouraging for smart luminaires in tertiary context due to a greater number of luminaires being controlled and a higher potential for reduce usage.

LCA SSL reports

LCA of light bulbs for different electrical mixes (EU, FR, AU, NZ) from my thesis manuscript

Lamps	Power (W)	Flux (lm)	Efficacy (lm/W)	Lifetime (kilo hours)
LED 0	11	1045	95	15
LED 1	8	1072	134	15
LED 2	8	1072	134	25
LED 3	5,3	1060	200	15
LED 4	5,3	1060	200	25
CFL	18	1224	68	10

Any mixes you want to add? US?

- ✓ LCA of T5, T8 and replacement LED Tubes
 - ✓ Mike and his son sent us inventories for each lamp, we are currently working on the LCA.
 - > Is it something we want/are allowed to include in the SSL Annex report?
- LCA of smart lamps (a paper will be presented at the LS18 conference this summer)
 - Residential? Tertiary? Both?

Conclusion

- ✓ End of my post-doctoral contract at the end of the week. Ridha will take care of the following actions.
- ✓ Thanks to all the members of the SSL Annex members. It was a fruitful collaboration for my PhD.
- ✓ My personal email: kevbertin@gmail.com

