

_

Why is Product Lifetime Important?

Product Lifetime, along with asset price, efficacy and electricity price is a key economic factor in the assessment of the cost-benefit of investing in a product.

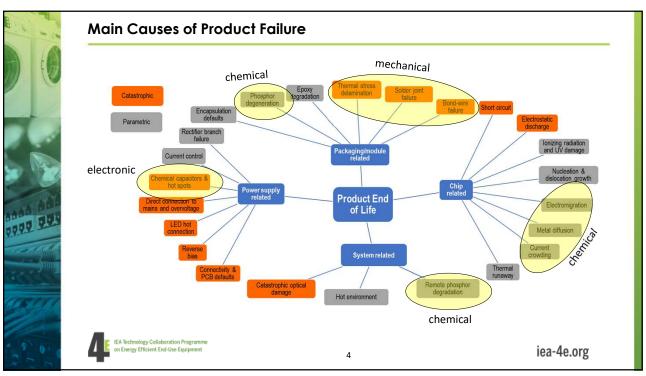
Therefore require some assurance that the product will endure typical operating conditions and deliver the intended level of service for the declared lifetime

Verification of Product Endurance/Lifetime provides confidence to the market.

- But verifying the lifetime by testing LED products until actual end of life is not practical
- So, ascertaining the ability of a product to endure certain operating conditions can provide an indication of the model's <u>likelihood</u> of reaching its intended (claimed median) lifetime

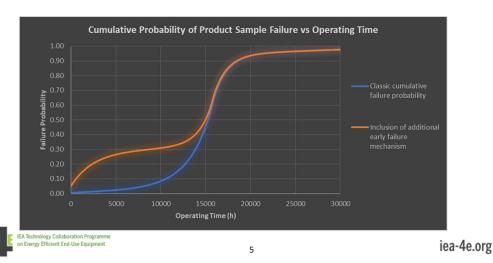
iea-4e.org

End of Life: Modes of Failure


These modes are indicative of what the market deems as unacceptable levels of service from the product

- · Catastrophic failure
 - Failure to produce light
 - Mechanical: electrical connection (unpredictable)
 - Electronic: key component failure (some are predictable with measurements)
- Parametric failure reduced functionality
 - Drop in lumen output
 - Luminous flux maintenance (predictable with measurements)
 - Change in the colour appearance
 - Colour shift (potentially predictable with measurements)
 - Increase in temporal light modulation
 - Change in SVM (potentially predictable with measurements)

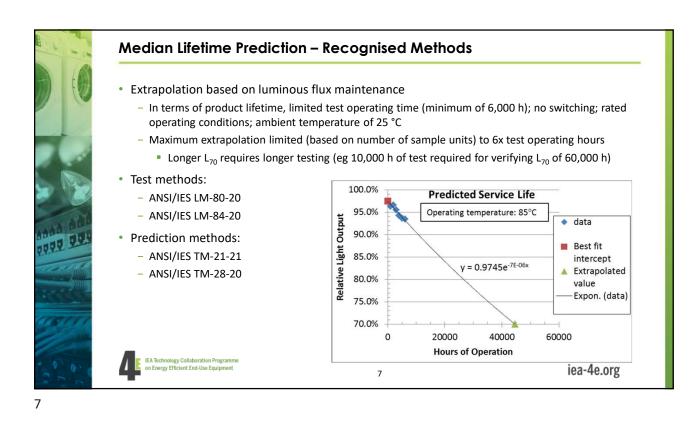
iea-4e.org

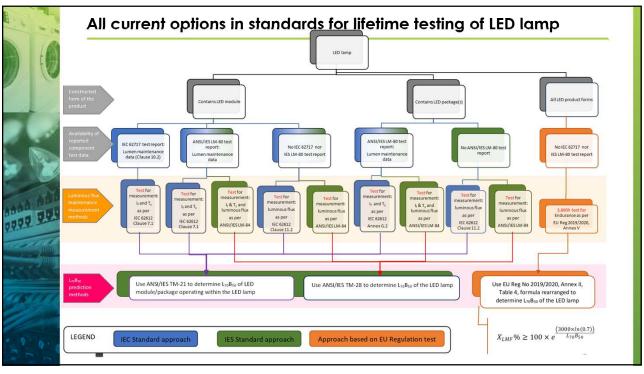

3

Desirable Performance Information in Relation to Product Failure

- Early failure rate (predominantly catastrophic but unpredictable)
- Expected median lifetime (generally parametric and predictable)

Endurance Tests within IEC 62612 & IEC 62717


- Accelerated operational life (i.e. Extreme conditions)
 - 10°C above maximum rated operating temperature
 - ON continuously
 - 1000 hours



- -10°C (1 h hold) transition for 1 h to 40°C (1h hold)
- ON (34 min): OFF (34 min)
- 250 thermal cycles (1000 hours)
- Supply switching (i.e. Typical)
 - 25°C ambient temperature
 - ON (30s): OFF (30s)
 - # cycle equals half the hours of rated life (eg 125 hours for 15k hour product)
- IEC 63221 LED Light sources Performance requirements (expected 2023)
 - Replaces IEC 62612 & IEC 62717 but retains the 3 endurance tests above
 - And, includes informative Annexes for Luminous flux maintenance test methods
 - Annex L EU 3000 h test (Annex V, EU Reg 2019/2020)
 - Annex M ANSI/IES LM-80-20

iea-4e.org

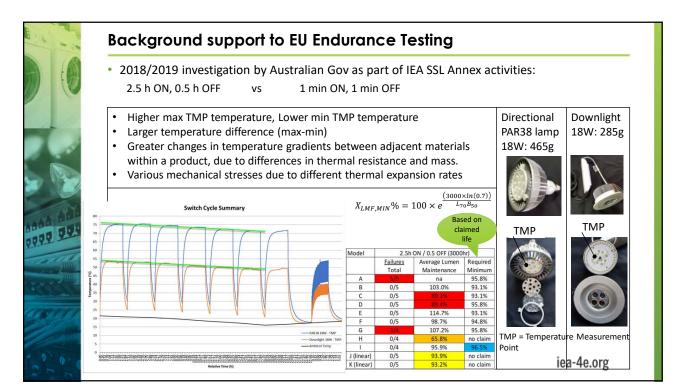
EU Reg 2019/2020, Annex V - Functionality after endurance testing

Compromise between extensive testing and sufficient testing to identify significant product endurance issues and substantiate lifetime claims based on luminous flux maintenance.

Test Conditions

- Power supply switching cycle:
 - ON 2.5 h and OFF 0.5 h
 - 1200 cycles (3,000 h of operation, test duration 3,600 h)
 - Ambient temperature 25 °C ± 10 °C

Criteria to be satisfied


- · Catastrophic Failure
 - Maximum of 1 of 10 samples fails to operate at end of test
- · Parametric Failure
 - Lumen maintenance factor, X_{LMF} %, no less than $X_{LMF,MIN}$ %, (determined from declared lifetime, L₇₀B₅₀)

$$X_{LMF}\% \geq X_{LMF,MIN}\% = 100 \times e^{\frac{\left(3000 \times ln(0.7)\right)}{L_{70}B_{50}}}$$

Up to a maximum requirement of 96% (approx. 25,000 h lifetime)

iea-4e.org

Can we shorten predictive life test by incorporating accelerated aging?

Australian Gov activity as part of IEA SSL Annex

11

iea-4e.org

11

Current Investigation

To gather test data to explore accelerated LED lifetime testing
through the measurement of luminous flux depreciation while a
lamp is operated within an elevated ambient temperature (e.g. 60
°C) for 1,500 hours and linking these results with the determined
luminous flux relationship between ambient and junction
temperatures.

iea-4e.org

Theory

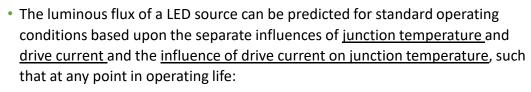
Luminous flux decay model

 Luminous flux maintenance is determined from the exponential decay function:

$$\frac{\emptyset_{T_0,I_0,t}}{\emptyset_{T_0,I_0,t=0}} = A_{T_0I_0}.e^{-\beta_{T_0I_0}.t}$$

for a set LED chip junction temperature, T_j , due to the forward current, I_0 , and ambient operating temperature, T_0 .

Note: ANSI/IES TM-21-21 Annexes F (Consideration of manufacturer's prediction model) & G (Analysis of
mathematical modelling as a method of projecting lumen maintenance life) provide a very good
assessment of different mathematical models but failed to find a more reliable model so continue to
recommend the use of the simple exponential model.



13

iea-4e.org

13

Theory (continued)

$$\emptyset_{T_1,I_1,t} = \emptyset_{T_0,I_0,t}.K_T.K_i.K_{iT}$$

- Need to determine K co-efficients, the values of which are intrinsic to the product design
 - $-K_i$ not required (set as = 1) in this discussion as driver current for a product is fixed

$$\emptyset_{T_1,t} = \emptyset_{T_0,t}.K_T.K_{iT}$$

iea-4e.org

Model Types to Test

Selected models

Five A-shape models are under test (10 units of each)

Selected "quality" products. Do not want lamps to have early catastrophic failure. (not the purpose of this research).

LN Code	Lamp type	LED type	Dim	Rated Power	Rated Lumens	Calculated Rated efficacy	Lifetime	сст	Reason for selection	Unit Price
LNLED185	A80	СОВ	no	19	2300	121.1	10,000	6500	High powered lamp with low life yet still high efficacy claim.	€ 14.00
LNLED186	A61	СОВ	no	9	840	93.3	15,000	CW	Average efficacy and typical life claims	€ 2.50
LNLED187	A50	СОВ	no	6	470	78.3	15,000	ww	Very low efficacy claim but typical life claim	€ 4.50
LNLED188	A60	Filament	no	9.5	1350	142.1	15,000	ww	Expected filament efficacy claim but no life claim	€ 5.00
LNLED189	Fancy	Filament	yes	5	470	94.0	25,000	3000	Very low efficacy claim for filament LED and but long life claim	€ 6.50

15

iea-4e.org

15

Test Method

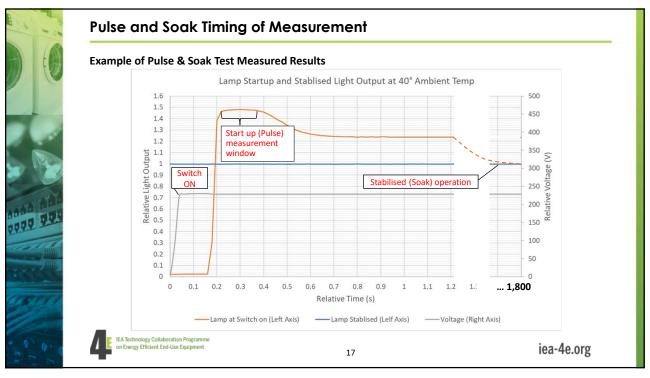
1. Accelerated Degradation Test (ADT)

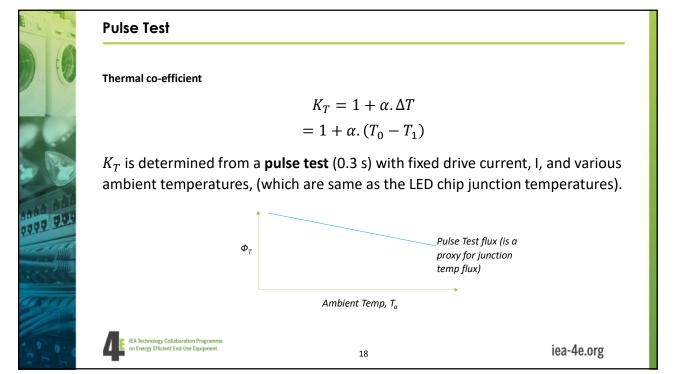
a) Lamps #1 - #5:

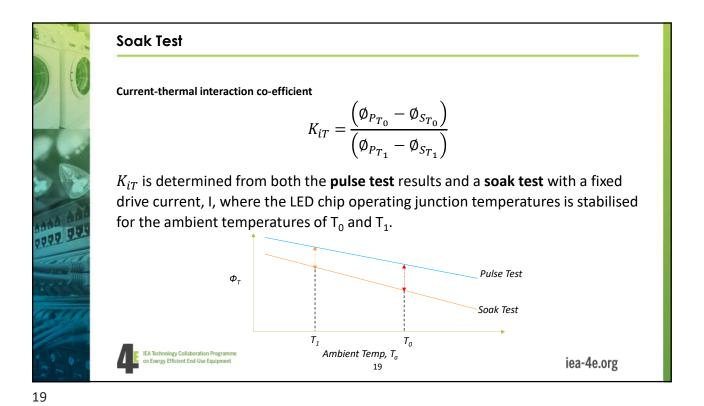
Operate in thermal chamber at a constant 60°C ambient temperature for a total of 1500 hours with measurements conducted at 0 hours and at 150-hour intervals

- b) Measurement of photometric quantities (flux, spectral, TLM) of lamps
- c) Determine luminous flux depreciation decay constants

2. Pulse and Soak Tests

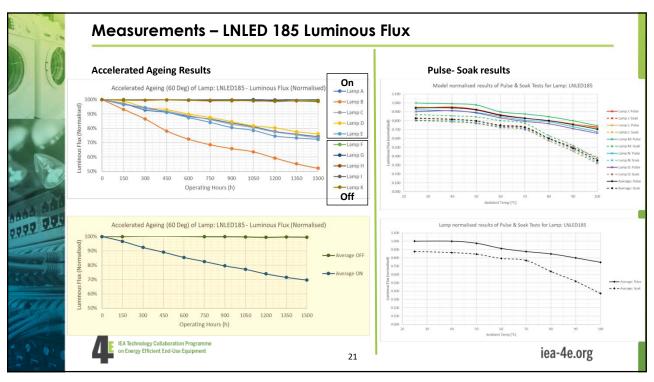

a) Lamps (#6 - #10):

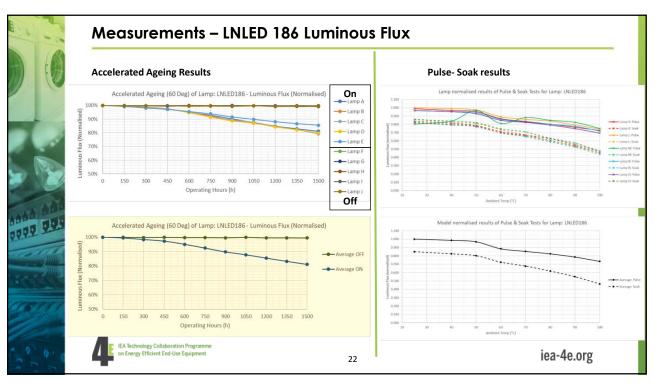

Measure the start-up (pulse) & stabilised (soak) relative luminous flux output at ambient temps of 25° C and 40° C to 100° C in 10° C steps

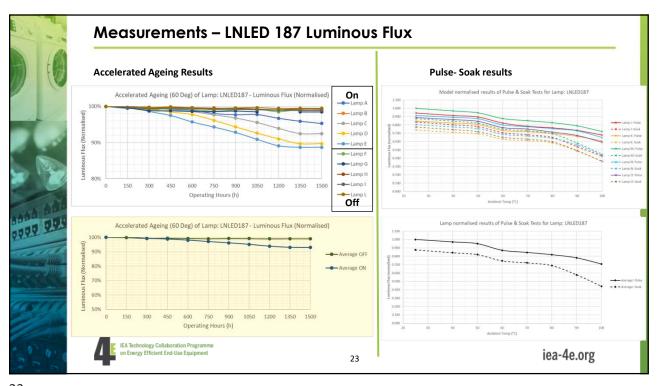


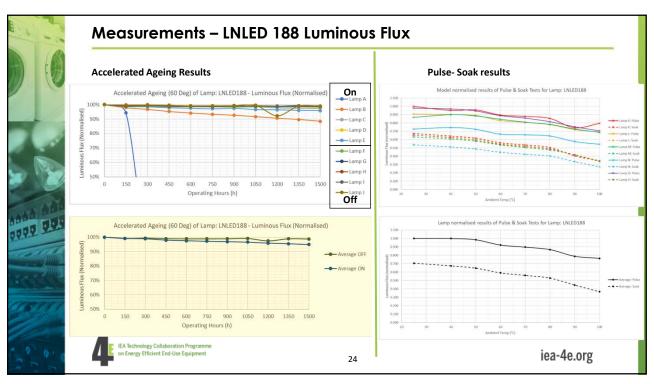
16

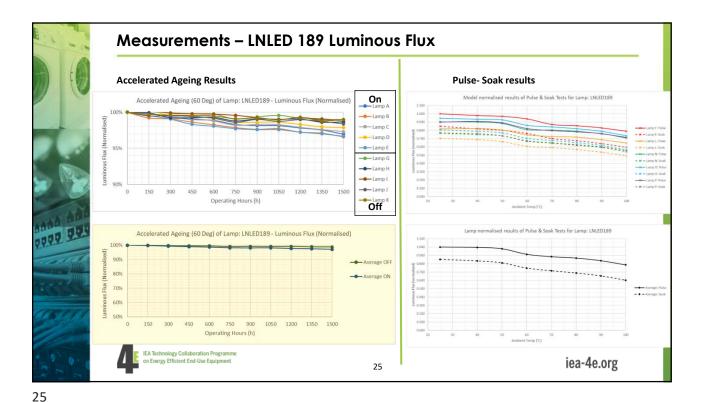
iea-4e.org


Pulse Test is a proxy for LED chip junction temperature


Pulse Test flux (is a proxy for junction temp flux)


This is junction temp for ambient temp
for ambient Temp, To


Ambient Temp, To


iea-4e.org

Results: Prediction based on Accelerated Life Test & Pulse Soak Test

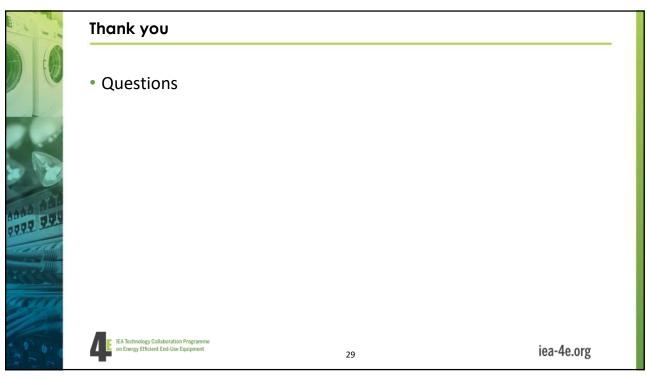
						Predicted	Rated
	A _{60°}	β _{60°}	K_T	K_{iT}	L _{70,60°}	L _{70,25°}	L _{70,25°}
LNLED 185	0.995748	-0.00025	0.917486	1.030325	1,438	1,711	12,000
LNLED 186	1.023181	-0.00015	0.893814	0.93969	2,566	4,748	15,000
LNLED 187	1.00904	-5.5E-05	0.879594	0.979994	6,608	11,127	15,000
LNLED 188	0.997225	-3.3E-05	0.92831	0.888968	10,740	23,490	15,000
LNLED 189	0.998672	-1.9E-05	0.920403	0.888731	18,792	43,238	15,000

Need to now investigate correlation with results from recognised test and prediction methods of ANSI/IES LM84 and ANSI/IES TM28).

27

iea-4e.org

27


Conclusion

- Continued research required
 - IEA 4E SSL Annex has published a literature review on lifetime testing: link here
- Ultimately, may resolve to have separate methodologies for affordable, shorter life "domestic" products and longer life "commercial" products
- Desirable to have information on early failures and median lifetime of products
 Ideally want test methodology that is
 - Non-invasive
 - Short duration (relative to product life)
 - Limited sample sets
 - Easily obtainable measurands
 - Covers assessment of dominant failure mechanisms
 - Electrical connection occurrence of catastrophic failure
 - Luminous flux depreciation predictive parametric failure
 - Colour shift predictive parametric failure
 - Electrolytic capacitor (output side of driver) predictive (ESR/TLM) parametric failure

28

iea-4e.org

