

iea-4e.org

Tear-down of drivers of LED lamps & failure analysis

- Failure analysis of 2 types of LED lamps Reference 163 and 150 (no name lamps)
 - 163-j and 163-g

- All LED chips were tested one by one :
 - Cause of failure : one burden LED chip no defect of the driver.
 - Structure: 9 Serial LED. If one LED is defective, the lamp stops working.
- The design of the driver has been reproduced
- The lamp assembly is not designed for disassembly, the bulb must have been completely cut out

Tec

Tear-down of drivers of LED lamps & failure analysis

- Failure analysis of 2 types of LED lamps Reference 163 and 150 (no name lamps)
 - 150-b and 150-c

- All LED chips were tested one by one :
 - Cause of failure: two burden parallel LED chips No defect of the driver
 - Structure : 14 Serial groups of two parallel LEDs.
 - If one LED is defective, the other in parallel takes to much power and burns. The lamp stops working
- The design of the driver has been reproduced
- The lamp assembly is not designed for disassembly: a part of the structural body
 of the lamp is completely fused with the driver components

Teardown work with Clean Lighting Coalition / CLASP

- **Purpose**: to compare, from a LCA basis, the current environmental impacts associated with replacing mercury-containing fluorescent lamps in an existing luminaire and replacing those fluorescent lamps with LED alternatives
- 2 scenarios : domestic and commercial/professional
 - Scenario 1 : Compact Fluorescent Lamp, integrally ballasted

The baseline is an existing, mains-voltage, integrally-ballasted 15W compact fluorescent lamp (CFLi) which operates in a table lamp. This lamp fails and the consumer must decide whether to replace it with another 15W CFLi or to install a new LED lamp of equivalent light output. A few LED scenarios will be considered, of different levels of quality (e.g., shorter life, longer life, lower and higher efficacy).

Rated lifetime	50,000 h
Rated luminous flux	840 lm
Rated power	4 W
Efficacy	210 lm/W

Last LED lamp from Philips : the most efficient on the market

Contributing to Minamata agreement

- Scenario 2 : Linear Fluorescent Lamps in a Luminaire

The baseline is an existing fluorescent fixture and four linear fluorescent lamps operating in this fixture. The lamp(s) fail, and the owner has a choice to make: either (a) replace the fluorescent tubes with new fluorescent tubes; (b) replace the fluorescent tubes with LED retrofit tubes; or (c) replace the luminaire with a new LED luminaire.

Lamp/Luminaire type	Models and Hyperlinks
Linear Fluorescent Lamp	Sylvania T8 Luxline Plus F18W 840 60cm - Cool White
LED Tube Options: Choose two	 Sylvania ToLEDo Superia HF T8 7.5W 840 60cm Cool White Philips LEDtube HF HO 8W 840 60cm (MASTER) Cool White Philips LEDtube EM HO 8W 840 60cm (MASTER) Cool White incl. LED Starter
LED Luminaire Option	Philips CoreLine RC120B LED Panel 60x60cm Replaces 4x18W

Contributing to Minamata agreement

- Analysis : Life cycle assessment
 - Functional unit : Megalumen.hours
 - Focus on products available on the market in 2021 (either good and bad quality)
 - Sensitivity analysis for 2025 potential products
 - Purchase and tear down will be done by Mike Scholand
 - Impacts assessment using Ecoinvent and Simapro will be done by Laplace Lab
- Reports will be done jointly by Mike Scholand and Laplace Lab (latest by early January 2022)
- Peer-review panel to be defined:
 - Morgan Pattison
 - Yoshi Ohno
 - Heather Dillon
 - Christofer Silfvenius
 - Mike Krames
 - Jim Brodrick
 - Jessica Richter
 - Leena Tähkämö
 - **?**?

